Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: results of the IAEA-UNESCO SGD project.

نویسندگان

  • P P Povinec
  • H Bokuniewicz
  • W C Burnett
  • J Cable
  • M Charette
  • J-F Comanducci
  • E A Kontar
  • W S Moore
  • J A Oberdorfer
  • J de Oliveira
  • R Peterson
  • T Stieglitz
  • M Taniguchi
چکیده

Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, and 228Ra) and stable (D and 18O) isotopes are presented together with in situ spatial mapping and time series 222Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d(-1) to 360 cm d(-1); the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d(-1) to 110 cm d(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17+/-10 cm d(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3) m3 d(-1) per km of the coast. The isotopic composition (deltaD and delta18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of 222Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25 km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island.

Submarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was investigated using radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, (228)Ra) and stable ((2)H, (18)O) isotopes and nutrients. SGD intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon measurements, seepa...

متن کامل

Submarine Discharge of Nitrate Rich Groundwater into Port Jefferson Harbor, Long Island, NY

The fate of nitrogen entering Long Island Sound Embayments is dependent on both volume of submarine groundwater discharge (SGD) and geochemical transformations in the coastal aquifer. Previous work in Stony Brook Harbor revealed the importance of sediment composition in the subtidal and offshore areas of the harbor; SGD rate in the subtidal is higher than offshore areas, but experiences only 30...

متن کامل

In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil

Transport between pore waters and overlying surface waters of Flamengo Bay near Ubatuba, Brazil, was quantified using natural and artificial geochemical tracers, Rn, Cl , and SF6, collected from multi-level piezometers installed along a transect perpendicular to the shore. Eight sampling ports positioned along the length of the piezometers allowed sampling of pore waters at discrete depth inter...

متن کامل

Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida

[1] Magnitudes of terrestrial (fresh) and marine (saline) sources of submarine groundwater discharge (SGD) are estimated for a transect across Indian River Lagoon, Florida. Two independent techniques (seepage meters and pore water Cl concentrations) show terrestrial SGD decreases linearly to around 22 m offshore, and these techniques, together with a model based on the width of the outflow face...

متن کامل

Submarine groundwater discharge in Northern Monterey Bay, California: Evaluation by mixing and mass balance models

Article history: Received 28 July 2015 Received in revised form 19 January 2016 Accepted 20 January 2016 Available online 26 January 2016 Monterey Bay, California (CA) receives nutrients from multiple sources, including river discharge, upwelling of deep water, and submarine groundwater discharge (SGD). Here we evaluate the relative importance of these sources to Northern Monterey Bay with a mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental radioactivity

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2008